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Supplementary Figures 

 
Supplementary Figure 1. Associations between perceived and actual social 
network characteristics. Black dashed lines depict the relationships between 
perceived and actual social network characteristics across all participants (fit using an 
ordinary least squares linear model). Solid purple, orange and green lines depict these 
relationships for each subject for social distance, eigenvector centrality, and constraint, 
respectively. (A) Neuroimaging study participants’ subjective ratings of social closeness, 
proportion of social time spent together, and frequency of discussions with the 
individuals in their stimulus sets varied according to geodesic network distance from 
them in the network (all p’s < .0001; see main text). (B) Participants’ estimates of the 
eigenvector centrality of the individuals in their stimulus sets were closely related to 
those individuals’ actual eigenvector centralities (p < .0001; see main text). (C) 
Participants’ estimates of the network constraint of individuals in their stimulus sets 
were also associated with the actual constraint of those individuals’ positions in the 
social network (p < .0001; see main text). As described in the main text, self-report data 
was obtained after scanning; network constraint and eigenvector centrality were log-
transformed prior to plotting and analysis to alleviate skew. Perceived network 
constraint ratings were multiplied by -1 prior to plotting because the relevant question 
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asked participants to rate perceived brokerage (which is inversely related to network 
constraint). Analyses of behavioral ratings were conducted using linear mixed models 
that included by-subject random slopes and intercepts. 
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Supplementary Figure 2. Voxel-wise R2 values, averaged across subjects, are 
depicted within clusters that reliably signaled one or more of the tested aspects 
of social network position. The R2 value corresponding to the GLM decomposition 
performed at each searchlight center indicates the extent to which the information 
contained in local multi-voxel response patterns can be explained by the social network 
positions of the classmates being viewed. Results are projected onto a cortical surface 
model of the Talairach1 N27 brain using PySurfer (https://github.com/nipy/PySurfer). 
Brain regions the reliably signaled one or more of the tested aspects of social network 
position are shown in Fig. 4 of the main text. 
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Supplementary Figure 3. Relationship between network constraint and movement 
during videos. The amount of movement of the 88 individuals whose videos were used 
as stimuli was not significantly related to the constraint characterizing those individuals’ 
positions in the social network of first-year MBA students, r = -0.12, p = 0.28. Solid line 
indicates an ordinary least squares fit to the data; shaded region indicates 95% 
bootstrapped confidence interval of the slope of the regression line. 
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Supplementary Figure 4. Post-scan questionnaire. Following scanning, participants 
responded to questions about their subjective perception of each aspect of social 
network position of interest for each individual in their stimulus set. A screenshot of the 
question corresponding to network constraint (reverse-scored) is shown. 
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Supplementary Tables 

  

Supplementary Table 3: Brain regions where local neural information content is 
associated with the constraint of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

R 11,872 51.5 -16.0 -3.0 STS, STG, MTG, ITS, pIns. 
L 7,739 -51.6 -38.5 7.1 STS, STG, MTG, pIns. 
R 4,363 11.5 -5.7 58.4 SMA, dorsal premotor cortex 
Hemi = hemisphere; COG=center of gravity; L = left; R = right; STS = superior temporal sulcus; 
STG = superior temporal gyrus; MTG = middle temporal gyrus; ITS = inferior temporal sulcus; 
pIns. = posterior insula; SMA = supplementary motor area. All reported results are significant at a 
statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space. 

Supplementary Table 2: Brain regions where local neural information content is 
associated with the eigenvector centrality of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

L 24,483 -42.4 -18.5 33.6 IPL, IFG, Ins., pre-central gyrus 
R 8,768 21.7 26.8 -4.9 MPFC, IFG, aIns., ant. PHG, TP 
L 7,716 -32.7 12.9 -6.1 aIns., IFG 
L, R 7,552 -9.4 -41.8 40.4 PCC, precuneus 
R 6,802 20.4 -48.0 -2.8 PHG, LG, FG 
R 6,065 48.0 -29.4 38.4 IPL, precuneus, post-central gyrus 
L, R 5,233 -0.8 -44.4 65.4 Precuneus, post-central gyrus 
L, R 4,961 -0.6 -83.3 28.5 EVC 
Hemi = hemisphere; COG = center of gravity; L = left; R = right; a = anterior; IPL = inferior parietal 
lobule; IFG = inferior frontal gyrus; Ins. = insula; MPFC = medial prefrontal cortex; PHG = 
parahippocampal gyrus; TP = temporal pole; PCC = posterior cingulate cortex; LG = lingual 
gyrus; FG = fusiform gyrus; EVC = extrastriate visual cortex. All reported results are significant at 
a statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space. 

Supplementary Table 1: Brain regions where local neural information content is 
associated with the social distance of the individuals being viewed. 
Hemi Size 

(mm3) 
COG 
x 

COG 
y 

COG 
z 

Location 

R 4,397 49.6 -46.6 7.6 IPL (SMG), STG, STS, MTG  
Hemi = hemisphere; COG = center of gravity; L = left; R = right; IPL = inferior parietal lobule; 
SMG = supramarginal gyrus; STG= superior temporal gyrus; STS = superior temporal sulcus; 
MTG = middle temporal gyrus. All reported results are significant at a statistical threshold of p < 
.05, FWE-corrected. All coordinates are in Talairach space. 
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Supplementary Methods 

 Optical flow analysis. To quantify the amount of movement within each video 

clip used as a stimulus in the neuroimaging experiment, the average optical flow (i.e., 

the pattern of apparent motion between consecutive video frames) was computed for 

each video that was shown in the fMRI study. Given that the videos used as stimuli 

were recorded by a stable camera against a plain, static background, optical flow 

estimates for these videos capture of the amount that each individual moved his or her 

facial features and head in the video clip. Farneback’s algorithm for motion estimation2 

as implemented in OpenCV3 was used to estimate the average magnitude of optical 

flow in each video. This method extracts a pixel-wise motion vector for each pair of 

sequential frames in which each pixel is characterized by a magnitude and a direction. 

To estimate the magnitude of motion within each frame pair, the magnitude values 

(without respect to direction) were summed across pixels. To compute the mean 

magnitude of optical flow for a given video, the motion magnitude estimates were 

averaged across frames within that video. 

In order to test whether or not individual differences in network constraint are 

related to movement in the videos used as stimuli, the correlation between network 

constraint and average motion magnitude was assessed among the 88 individuals 

whose videos were used as stimuli in the fMRI study. Given that distributions of both 

variables were highly skewed, data were log-transformed prior to analysis. The results 

of this procedure suggest that in the stimuli used in the current study, network constraint 

http://dx.doi.org/10.1038/s41562-017-0072


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-017-0072 | www.nature.com/nathumbehav	 9

SUPPLEMENTARY INFORMATION
	

	

and amount of movement were not significantly correlated, r = -0.12, p = 0.28 (see 

Supplementary Fig. 3). 

 Post-scan questionnaire. Participants performed the post-scan questionnaire 

on a 13” MacBook laptop using Psychopy4. Participants first viewed an instruction 

screen that read, “Now you will see the same people who you saw in the scanner. You 

will be asked questions about each person. These questions relate only to this person’s 

interactions within the [institution name] MBA cohort. We understand that people have 

many social circles that they participate in (perhaps including family, friends outside of 

[the institution], other contacts, etc.). For these questions, please just consider 

interactions within the MBA cohort.  You will be presented with a continuous rating scale 

for each question. You can choose any point along the continuum to respond. Press 

any key to continue.” During the survey, videos of the 12 individuals from the 

participant’s stimulus set were presented in a random order. Participants responded to 

all questions about a given individual sequentially, and the same video that had played 

in the scanner repeated on a loop (without sound) above the question text and response 

scale (see Supplementary Fig. 4). 

Participants were presented with questions concerning lay definitions of 

eigenvector centrality (“In social network analysis, scientists assess a construct that 

measures how many friends a person has, and how many friends a person’s friends 

have. How would you rate this person on this construct?” Responses ranged from “Low 

(few friends who have few friends)” to “High (many friends who have many friends)”) 

and constraint (“Social network analysts also assess a construct called ‘brokerage’ that 
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measures how much a person connects groups of people who wouldn’t otherwise be 

connected. Using this definition, how high is this individual in ‘brokerage’?” Responses 

ranged from “Low (this person never connects distinct groups of people” to “High (This 

person often connects distinct groups of people)”). Responses to the item assessing 

brokerage were reverse scored in order to estimate perceived network constraint. 

 Participants were also presented with the name generator that had originally 

been used to construct the network (“Consider the people with whom you like to spend 

your free time. During the last month, is this one of the classmates who you have been 

with most often for informal friendship activities, such as going out to lunch, dinner, 

drinks, films, visiting one another’s homes, and so on?” Responses ranged on a 

continuum from “None of my social activities in the past month have included this 

person” to “All of my social activities in the past month have included this person”), as 

well as questions designed to assess tie strength (“How close are you with this person?” 

Responses ranged from “Distant” to “Less than close” to “Close” to “Especially Close”) 

and frequency of interactions (“On average, how often do you talk to this person (any 

social or business discussion)?” Responses ranged from “Less often” to “Monthly” to 

“Weekly” to “Daily”).  
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